Preliminary communication

Synthesis and characterisation of hexanuclear ruthenium clusters containing a μ_{4}-nitrene ligand. Crystal structures of $\left[\mathrm{Ru}_{6}(\mathrm{CO}){ }_{15}\left(\mu\right.\right.$-CO) $2_{2}\left(\mu_{4}-\mathrm{NH}\right)(\mu$-OMe $\left.)\left\{\mu_{3}-\eta^{2}-\mathrm{N}(\mathrm{H}) \mathrm{C}(\mathrm{O}) \mathrm{OMe}\right\}\right]$ and $\left[\mathrm{Ru}_{6}(\mathrm{CO})_{16}(\mu-\mathrm{CO})_{2}\left(\mu_{4}-\mathrm{NH}\right)(\mu-\mathrm{OMe})(\mu-\mathrm{NCO})\right]$

Kenneth Ka Hong Lee, Wing Tak Wong *
Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong

Received 21 April 1995

Abstract

Two hexaruthenium carbonyl clusters $\left[\mathrm{Ru}_{6}(\mathrm{CO})_{15}(\mu-\mathrm{CO})_{2}\left(\mu_{4}-\mathrm{NH}\right)(\mu-\mathrm{OMe})\left\{\mu_{3}-\eta^{2}-\mathrm{N}(\mathrm{H}) \mathrm{C}(\mathrm{O}) \mathrm{OMe} \mathrm{e}\right] 1\right.$ and $\left[\mathrm{Ru}_{6}(\mathrm{CO})_{10}(\mu-\mathrm{CO})_{2}-\right.$ ($\left.\mu_{4}-\mathrm{NH}\right)(\mu$-OMe) $(\mu-\mathrm{NCO})] 2$ have been isolated from the pyrolysis of $\mathrm{H}_{2} \mathrm{Ru}_{3}(\mathrm{CO})_{9} \mathrm{NOCH}_{3}$, and single-crystal X-ray structure analysis shows that both $\mathbf{1}$ and $\mathbf{2}$ have a square planar arrangement of four ruthenium atoms capped by a μ_{4}-nitrene ligand, with two additional ruthenium atoms bridging two opposite Ru-Ru edges of the square base to form a 'boat' form metal framework.

Keywords: Ruthenium; Clusters; Nitrene; Carbonyl; Crystal structure

Nitrosyl-containing metal clusters [1-3] have been investigated extensively owing to their higher reactivity towards electrophilic attack by alkylating agents [4]. However, little attention has been given to the reactivity of the O-alkylated nitrosyl compounds. Herein, we report a thermal coupling reaction of trinuclear ruthenium cluster containing a triply bridging methoxynitrido group, $\left[\mathrm{H}_{2} \mathrm{Ru}_{3}(\mathrm{CO})_{9} \mathrm{NOCH}_{3}\right][4,5]$ to give Ru_{6} nitrene clusters.

Heating of $\left[\mathrm{H}_{2} \mathrm{Ru}_{3}(\mathrm{CO})_{9} \mathrm{NOCH}_{3}\right]$ at $140^{\circ} \mathrm{C}$ for 2 hours ${ }^{1}$ affords $\left[\mathrm{HRu}_{3}(\mathrm{CO})_{10} \mathrm{NH}_{2}\right.$] [9] as the major

[^0]product (ca. 50%) along with two hexanuclear ruthenium clusters $\left[\mathrm{Ru}_{6}(\mathrm{CO})_{15}(\mu-\mathrm{CO})_{2}\left(\mu_{4}-\mathrm{NH}\right)(\mu-\mathrm{OMe})-\right.$ $\left.\left\{\mu_{3}-\eta^{2}-\mathrm{N}(\mathrm{H}) \mathrm{C}(\mathrm{O}) \mathrm{OMe}\right\}\right] \mathbf{1}$ and $\left[\mathrm{Ru}_{6}(\mathrm{CO})_{16}(\mu-\mathrm{CO})_{2}-\right.$ $\left.\left(\mu_{4}-\mathrm{NH}\right)(\mu-\mathrm{OMe})(\mu-\mathrm{NCO})\right] 2^{2}$. Dark green crystals of $\mathbf{1}$ and dark blue crystals of 2 suitable for single crystal X-ray analysis were grown by slow evaporation

[^1]

Fig. 1. The structure of $\left[\mathrm{Ru}_{6}(\mathrm{CO})_{15}(\mu-\mathrm{CO})_{2}\left(\mu_{4}-\mathrm{NH}\right)(\mu-\mathrm{OMe})\left(\mu_{3}-\eta^{2}-\mathrm{N}(\mathrm{H}) \mathrm{C}(\mathrm{O}) \mathrm{OMe}\right\}\right] 1$ showing the atom numbering scheme. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right): \operatorname{Ru}(1)-\operatorname{Ru}(2) 2.833(1), \operatorname{Ru}(2)-\operatorname{Ru}(3) 2.969(1), \operatorname{Ru}(4)-\operatorname{Ru}(6) 2.719(1), \operatorname{Ru}(5)-\mathrm{Ru}(6) 2.733(1), \mathrm{Ru}(1)-\mathrm{Ru}(3) 2.839(1)$, $\mathrm{Ru}(2)-\mathrm{Ru}(4) 2.811(1), \mathrm{Ru}(3)-\mathrm{Ru}(5) 2.826(1), \mathrm{Ru}(4)-\mathrm{Ru}(5) 2.878(1), \mathrm{Ru}(2)-\mathrm{O}(18) 2.092(5), \mathrm{Ru}(3)-\mathrm{O}(18) 2.101(5), \mathrm{Ru}(4)-\mathrm{N}(2) 2.193(6)$, $\mathrm{Ru}(5)-\mathrm{N}(2) 2.189(6), \mathrm{Ru}(6)-\mathrm{O}(19) 2.193(5), \mathrm{Ru}(2)-\mathrm{N}(1) 2.173(6), \mathrm{Ru}(3)-\mathrm{N}(1) 2.174(6), \mathrm{Ru}(4)-\mathrm{N}(1) 2.191(6), \mathrm{Ru}(5)-\mathrm{N}(1) 2.200(6), \mathrm{O}(19)-$ $\mathrm{C}(19) 1.254(9), \mathrm{O}(20)-\mathrm{C}(20) 1.45(1), \mathrm{N}(2)-\mathrm{C}(19) 1.357(10), \mathrm{N}(1)-\mathrm{H}(1) 0.8(1), \mathrm{N}(2)-\mathrm{H}(8) 0.7(1), \mathrm{Ru}(3)-\mathrm{Ru}(2)-\mathrm{Ru}(4) 89.06(3), \mathrm{Ru}(2)-\mathrm{Ru}(3)-$ $\mathrm{Ru}(5) 89.08(3), \mathrm{Ru}(2)-\mathrm{Ru}(4)-\mathrm{Ru}(5) 91.24(3), \mathrm{Ru}(4)-\mathrm{Ru}(6)-\mathrm{O}(19) 82.8(1), \mathrm{Ru}(3)-\mathrm{Ru}(5)-\mathrm{Ru}(4) 90.62(3), \mathrm{Ru}(4)-\mathrm{N}(2)-\mathrm{Ru}(5) 82.1(2), \mathrm{O}(19)-$ $\mathrm{C}(19)-\mathrm{O}(20) 120.1(7), \mathrm{O}(20)-\mathrm{C}(19)-\mathrm{N}(2) 115.3(7)$.
of $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ n-hexane $(1: 2)$ solution at $0^{\circ} \mathrm{C}^{3}$. The molecular structures and selected bond parameters for $\mathbf{1}$ and 2 are shown in Figs. 1 and 2 respectively.

[^2]The metal frameworks of $\mathbf{1}$ and $\mathbf{2}$ are structurally related as they both involve of a square planar arrangement of 4 ruthenium atoms, $\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(4)-\mathrm{Ru}(5)$ symmetrically capped by a quadruply bridging nitrene ligand. The opposite edges of the square base are bridged by two additional ruthenium atoms which lie above the square plane on the side of the nitrene ligand to form a 'boat' form metal core similar to $\left[\mathrm{Ru}_{6}(\mathrm{CO})_{14}-\right.$ (μ-CO $)_{2}\left(\mu_{4}-\mathrm{S}\right)\left(\mu_{3}-\eta^{2}\right.$-EtNCSNHEt) $\left(\mu_{3}-\eta^{2}\right.$-EtNCN$\mathrm{HEt})][6]$ and $\left[\mathrm{Ru}_{6}(\mathrm{CO})_{16}(\mu-\mathrm{CO})_{2}(\mu-\mathrm{OH})_{2}\left(\mu_{4}-\mathrm{S}\right)\right]$ [7]. The $R u(4)-R u(5)-R u(6)$ substructure of 1 is bridged by a $\mu_{3}-\eta^{2}-\mathrm{N}(\mathrm{H}) \mathrm{C}(\mathrm{O}) \mathrm{OMe}$ ligand, and in 2 there is only a cyanato ligand bridging the edge $\mathrm{Ru}(4)-\mathrm{Ru}(5)$. Both 1 and 2 have a bridging methoxy group at the edge $\mathrm{Ru}(2)-\mathrm{Ru}(3)$ and two bridging carbonyls at $\mathrm{Ru}(2)-$ $R u(4)$ and $R u(3)-R u(5)$. Their coordination spheres are completed by terminal carbonyls to give a Cluster Valence Electrons (CVE) count of 94 [6,7]. The nitrene N atom lies $0.81 \AA$ for 1 and $0.82 \AA$ for 2 above the square planar basal plane of $R u(2)-R u(3)-R u(4)-R u(5)$, to form square pyramidal configuration. The average $\mathrm{Ru}-\mathrm{N}$ distances of the nitrene are $2.185 \AA$ and $2.190 \AA$ for $\mathbf{1}$ and $\mathbf{2}$, respectively, i.e. slightly longer than that in $\left[\mathrm{Ru}_{4}(\mathrm{NH})(\mathrm{PhCCPh})(\mathrm{CO})_{11}\right][8](2.145 \AA)$. In 2 the dihedral angles between the plane $\operatorname{Ru}(2)-\operatorname{Ru}(3)-\operatorname{Ru}(4)-$ $\mathrm{Ru}(5)$ and $\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$ as well as $\mathrm{Ru}(4)-$ $\mathrm{Ru}(5)-\mathrm{Ru}(6)$ are 153.6° and 151.0° respectively. In 1 the dihedral angle between the plane $\mathrm{Ru}(2)-\mathrm{Ru}(3)-$ $\mathrm{Ru}(4)-\mathrm{Ru}(5)$ and $\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$ is 150.6°. However, the dihedral angle between the plane $\mathrm{Ru}(2)-$

Fig. 2. The structure of $\left[\mathrm{Ru}_{6}(\mathrm{CO})_{16}(\mu-\mathrm{CO})_{2}\left(\mu_{4}-\mathrm{NH}\right)(\mu-\mathrm{OMe})(\mu\right.$ - NCO$\left.)\right] 2$ showing the atom numbering scheme. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right): \operatorname{Ru}(1)-\mathrm{Ru}(2) 2.786(3), \mathrm{Ru}(2)-\mathrm{Ru}(3) 2.922(2), \mathrm{Ru}(4)-\mathrm{Ru}(6) 2.800(2), \mathrm{Ru}(5)-\mathrm{Ru}(6) 2.812(2), \mathrm{Ru}(1)-\mathrm{Ru}(3) 2.792(3), \mathrm{Ru}(2)-\mathrm{Ru}(4)$ $2.813(2), \mathrm{Ru}(3)-\mathrm{Ru}(5) 2.818(3), \mathrm{Ru}(4)-\mathrm{Ru}(5) 2.94 \mathrm{I}(3), \mathrm{Ru}(2)-\mathrm{O}(19) 2.10(1), \mathrm{Ru}(3)-\mathrm{O}(19) 2.08(1), \mathrm{Ru}(4)-\mathrm{N}(2) 2.09(1), \mathrm{Ru}(5)-\mathrm{N}(2) 2.09(1)$, $\mathrm{Ru}(2)-\mathrm{N}(1) 2.19(1), \mathrm{Ru}(3)-\mathrm{N}(1) 2.18(1), \mathrm{Ru}(4)-\mathrm{N}(1) 2.19(2), \mathrm{Ru}(5)-\mathrm{N}(1) 2.20(2), \mathrm{N}(1)-\mathrm{H}(1) 0.9(2), \mathrm{N}(2)-\mathrm{C}(20) 1.19(2), \mathrm{O}(20)-\mathrm{C}(20)$ $1.21(3), \mathrm{Ru}(3)-\mathrm{Ru}(2)-\mathrm{Ru}(4) 90.38(7), \mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(5) 89.99(7), \mathrm{Ru}(2)-\mathrm{Ru}(4)-\mathrm{Ru}(5)$ 89.70(6), $\mathrm{Ru}(2)-\mathrm{O}(19)-\mathrm{Ru}(3) 88.6(5), \mathrm{Ru}(3)-\mathrm{Ru}(5)-$ $\mathrm{Ru}(4) 89.90(6), \mathrm{O}(20)-\mathrm{C}(20)-\mathrm{N}(2) 173(3), \mathrm{Ru}(4)-\mathrm{N}(2)-\mathrm{Ru}(5) 89.4(6), \mathrm{Ru}(5)-\mathrm{N}(2)-\mathrm{C}(20) 136(1)$.
$R u(3)-R u(4)-R u(5)$ and $R u(4)-R u(5)-R u(6)$ in 1 is increased to 168.3° owing to the chelating effect of the $\mu_{3}-\eta^{2}-\mathrm{N}(\mathrm{H}) \mathrm{C}(\mathrm{O}) \mathrm{OMe}$ ligand. This $\mathrm{N}(\mathrm{H}) \mathrm{C}(\mathrm{O}) \mathrm{OMe}$ moiety in 1 can be regarded as a carbamate derivative, and is essentially coplanar (maximum derivation $0.023 \AA$).

The ${ }^{1} \mathrm{H}$ NMR spectrum of 1 exhibits two singlets at $\delta 3.75$ and 2.83 due to methoxy group resonance and broad peaks at $\delta 5.55$ and -0.82 that are assigned to the μ_{4}-nitrene and the amido hydrogen, respectively. Similarly, the singlet at $\delta 3.74$ and broad peak at δ 5.70 are assigned to the bridging methoxy group and the μ_{4}-nitrene ligand, respectively, in the spectrum of 2. The nitrene hydrogen atoms of 1 and 2 were located from difference Fourier synthesis at $0.8(1)$ and $0.9(2) \AA$ from $\mathrm{N}(1)$. The distance is very similar to that in $\mu_{4}-\mathrm{NH}$ in $\left[\mathrm{Ru}_{4}(\mathrm{NH})(\mathrm{PhCCPh})(\mathrm{CO})_{11}\right.$ [8]. We believe that the nitrene hydrogen comes from a hydride ligand of the $\left[\mathrm{H}_{2} \mathrm{Ru}_{3}(\mathrm{CO})_{9} \mathrm{NOCH}_{3}\right]$.

Acknowledgements

We thank the Hong Kong Research Grants Council and the University of Hong Kong for financial support.

References

[1] P. Legzdins, C.R. Nurse and S.J. Rettig. J. Am. Chem. Soc., 105 (1983), 3277.
[2] B.F.G. Johnson, P.R. Raithby and C. Zuccaro. J. Chem. Soc., Dalton Trans., (1980), 99.
[3] D.E. Fjare and W.L. Gladfelter. J. Am. Chem. Soc., 106 (1987), 4799.
[4] R.E. Stevens and W.L. Gladfelter. J. Am. Chem. Soc., 104 (1982), 6454.
[5] R.E. Stevens, R.D. Guettler and W.L. Gladfelter, Inorg. Chem., 29 (1990), 451.
[6] U. Bodensieck, L. Hoferkamp, H. Stoeckli-Evans and G. SüssFink. J. Chem. Soc., Dalton Trans., (1993), 127.
[7] R.D. Adams, J.E. Babin and M. Tasi. Inorg. Chem., 26 (1987), 2561.
[8] M.L. Blohm and W.L. Gladfelter. Organometallics, 5 (1986), 1049.
[9] B.F.G. Johnson, J. Lewis and J.M. Mace. J. Chem. Soc., Chem. Commun., (1984), 186.
[10] M.C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, G. Polidori, R. Spagna and D. Viterbo. J. Appl. Cryst., 22 (1989), 389.
[11] teXsan: Crystal Structure Analysis Package, Molecular Structure Corporation 1985 and 1992.

[^0]: * Corresponding author.
 ${ }^{1}$ A sample of $\mathrm{H}_{2} \mathrm{Ru}_{3}(\mathrm{CO})_{9} \mathrm{NOCH}_{3}(200 \mathrm{mg}, 0.333 \mathrm{mmol})$ was sealed in a Carius tube under reduced pressure. The tube was kept in an oven at $140^{\circ} \mathrm{C}$ for 2 hours. The dark green residue was then extracted with dichloromethane until the extract became colorless. The solvent was removed from the combined dark green extracts and the residue was chromatographed on TLC plate with n-hexane/dichloromethane mixture ($9: 1$) as eluent. A green ($R_{\mathrm{f}} \sim 0.45$) and blue band ($R_{\mathrm{f}} \sim 0.4$), respectively yielded 1 and 2, each in ca. 5% yield.

[^1]: ${ }^{2}$ Spectroscopic Data for 1: 1R (n-hexane) $\nu(\mathrm{CO}) 2095 w, 2065 \mathrm{vs}$, $2051 \mathrm{~s}, 2025 \mathrm{~s}, 2010 \mathrm{vs}, 2003 \mathrm{~s}, 1993 \mathrm{w}$ and $1983 \mathrm{w} \mathrm{cm}{ }^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 5.55\left(\mathrm{t}, \tau_{\mathrm{NH}}=46 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H})$ and -0.82 (br, 1H); FAB mass spectrum: $m / z 1203, \mathrm{M}^{+}$; Elemental analysis (Found: C, 20.5; $\mathrm{H}, 0.6 ; \mathrm{N}, 2.4 \% . \mathrm{C}_{20} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{20} \mathrm{Ru}_{6}$ Calc. C, 19.97; H, 0.67; N, 2.33\%).

 2: IR (n-hexane) $\nu(\mathrm{CO}) 2099 \mathrm{w}, 2071 \mathrm{vs}, 2056 \mathrm{~s}, 2049 \mathrm{~s}, 2039 \mathrm{vs}$, $2012 \mathrm{~m}, 1984 \mathrm{w}, 1875 \mathrm{w}$ and $1847 \mathrm{w} \mathrm{cm}{ }^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 5.70$ ($\mathrm{t}, \tau_{\mathrm{NH}}=43 \mathrm{~Hz}, 1 \mathrm{H}$) and $3.74(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{FAB}$ mass spectrum: m / z 1171, (M-CO) ${ }^{+}$; Elemental analysis (Found: $\mathrm{C}, 20.5 ; \mathrm{H}, 0.3 ; \mathrm{N}$, $2.6 \% . \mathrm{C}_{20} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{20} \mathrm{Ru}_{6}$ requires $\mathrm{C}, 20.04 ; \mathrm{H}, 0.34 ; \mathrm{N}, 2.34 \%$).

[^2]: ${ }^{3}$ Crystal Data for 1: $\left[\mathrm{Ru}_{6}(\mathrm{CO})_{15}(\mu-\mathrm{CO})_{2}\left(\mu_{4}-\mathrm{NH}\right)(\mu\right.$-OMe $)\left(\mu_{3}-\right.$ $\left.\left.\eta^{2}-\mathrm{N}(\mathrm{H}) \mathrm{C}(\mathrm{O}) \mathrm{OMe}\right\}\right], \quad \mathrm{C}_{20} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{20} \mathrm{Ru}_{6}, \quad \mathrm{M}=1202.70$, Triclinic, space group $P \mathrm{i}$ (No. 2), $a=11.773(4), b=15.993(9), c=9.367(2) \AA$, $\alpha=94.00(2), \beta=107.92(2), \gamma=104.22(2)^{\circ}, U=1606.5(7) \AA^{3}, Z=$ $2, D_{\text {calc }}=2.484 \mathrm{gcm}^{-3}, F(000)=1132$, Mo $\mathrm{K} \alpha$ radiation, temperature $298 \mathrm{~K}, \lambda=0.71073 \AA, \mu(\mathrm{Mo} \mathrm{K} \alpha)=28.35 \mathrm{~cm}^{-1}$, green block $0.22 \times 0.26 \times 0.30 \mathrm{~mm}, 3362$ observed diffractometer data [$I>$ $3 \sigma(/)]$. Structure solved by direct methods (SIR88) [10] and Fourier difference techniques, refined by full-matrix least-squares analysis (Ru, N and non-hydrogen atoms of $N(H) C(O) O M e$ moiety anisotropic, hydrogen atoms attached to nitrogen atoms were located by difference Fourier synthesis, while other hydrogen atoms were generated in their idealized positions $\mathrm{C}-\mathrm{H}, 0.96 \AA$) to $R=0.031$, $R_{\mathrm{w}}=0.033, \omega=4 F_{0}^{2} /\left[\sigma^{2}\left(F_{0}\right)^{2}+0.006\left(F_{0}^{2}\right)^{2}\right]$.
 Crystal Data for 2: $\left[\mathrm{Ru}_{6}(\mathrm{CO})_{16}(\mu-\mathrm{CO})_{2}\left(\mu_{4}-\mathrm{NH}\right)(\mu\right.$-OMe $)(\mu$ $\mathrm{NCO})], \mathrm{C}_{20} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{20} \mathrm{Ru}_{6}, \mathrm{M}=1198.67$, Monoclinic, space group $P 2_{1} / c$ (No. 14) , $a=9.094(4), b=11.718(4), c=30.334(4) \AA, \beta=$ $93.97(2)^{\circ}, U=3224(1) \AA^{3}, Z=4, \quad D_{\text {calc }_{0}}=2.469 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=$ 2248 , Mo $\mathrm{K} \alpha$ radiation, $\lambda=0.71073 \AA$, temperature $298 \mathrm{~K}, \mu$ (Mo $\mathrm{K} \alpha)=28.24 \mathrm{~cm}^{-1}$, blue needle $0.12 \times 0.14 \times 0.34 \mathrm{~mm}, 1896$ observed reflections [$I>3 \sigma(I)$]. Structure determined by a combination of direct methods (SIR88) [10] and difference Fourier techniques and refined by full-matrix least-squares analysis (Ru and N of the $\mu_{4}-\mathrm{NH}$ group anisotropic, hydrogen atoms on $\mu_{4}-\mathrm{NH}$ was located by difference Fourier synthesis while other hydrogen atoms were placed in their idealized positions $\mathrm{C}-\mathrm{H}, 0.96 \AA$) to $R=0.041, R_{\mathrm{w}}=0.043$, $\omega=4 F_{0}^{2} /\left[\sigma^{2}\left(F_{0}\right)^{2}+0.003\left(F_{\mathrm{o}}^{2}\right)^{2}\right]$. Program used teXsan [11]. Tables of atomic coordinates, thermal parameters, and a complete list of bond lengths and angles for both 1 and 2 have been deposited at the Cambridge Crystallographic Data Centre.

